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3DCMM: 3D Comprehensive Morphable Models
with UV-UNet for Accurate Head Creation
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Abstract—In recent studies of 3D shape modelling and re-
construction, the focus has primarily been on the 3D face
region. However, accurately creating the entire 3D head opens
up a wide range of applications, including headwear design,
cranial diagnosis, and avatar design. Therefore, we present
our newly developed method of constructing 3D comprehensive
morphable models (3DCMM) specifically tailored for human
heads, along with a novel 3DCMM-based stepwise pipeline for
creating accurate full 3D heads. Within our 3DCMM framework,
we constructed a powerful 3D morphable face model with
UV-UNet to generate the 3D face and predict the 3D scalp,
resulting in a complete representation of the head. Additionally,
our 3DCMM-based self-learning approach incorporates novel
facial boundary-aware and structure-aware losses for highly
accurate overall reconstructions of the entire facial region.
Experimental evaluations demonstrate that our 3DCMM exhibits
superior face representation power and achieves higher head
prediction accuracy than existing models. Consequently, our
3DCMM-based 3D head creation method from a single image
demonstrates outstanding performance capability on both face
and head benchmarks. Our project is publicly available at:
https://github.com/Easy-Shu/HeadUV-UNet.

Index Terms—3D morphable model, 3D face reconstruction,
3D scalp completion, 3D head creation.

I. INTRODUCTION

3D face creation is a significant research area with the
objective of recovering accurate 3D facial geometry from

unconstrained 2D images. Previous approaches have predomi-
nantly utilized learning-based methods to estimate shape coef-
ficients of 3D statistical morphable face models [1]. However,
the task of full 3D head creation poses greater challenges
and complexities, yet it offers numerous novel applications
and opportunities to overcome the constraints associated with
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existing 3D face creation and reconstruction methods based
solely on face images. In the field of computer graphics, a
comprehensive understanding of the entire head holds signif-
icant value for designers, enabling them to effectively model
hairstyles and generate high-fidelity avatars [2]. Furthermore,
in ergonomics design, a detailed 3D representation of the full
head enables the evaluation and customization of headwear
products like helmets and headphones, ensuring optimal fit
and comfort for individuals [3], [4]. Additionally, in cranial
diagnosis, a comprehensive 3D representation of the full head
can facilitate the detection of craniofacial deformities and
changes [5]. In contrast to previous studies that predominantly
concentrated on closely cropped inner facial regions [1], we
addressed the challenge of creating a full 3D head from 2D
face images, encompassing both the facial and scalp regions.

Although many powerful 3D statistical morphable models
(3DMMs) of human faces [7], [8], [9] or heads (e.g., low-
resolution FLAME [10] and LYHM (mostly Caucasian)) have
been constructed for 3D face/head generation and reconstruc-
tion, limited studies exist on predicting the full 3D head from
the generated 3D facial regions [11]. Furthermore, compared
with 3D face reconstruction from a single 2D image [1], [12],
[13], [14], [15], [16], [17], full 3D head reconstruction meth-
ods are much less common. State-of-the-art self-supervised-
learning-based methods for 3D head reconstruction utilize
deep convolutional neural networks (CNNs) to regress the
head shape or texture parameters of 3DMMs in an analysis-by-
synthesis scheme, which offers the advantage of not requiring
ground-truth 3D data for training. Examples of such methods
include RingNet [14] and DECA [18]. However, a single-face
image can only provide facial information and does not capture
scalp information due to the hair-occlusion problem, resulting
in inaccurate reconstruction of the scalp region.

To address the limitations mentioned above, our research
developed 3D comprehensive morphable models (3DCMM) to
enable the stepwise creation of full 3D heads from a single 2D
face image (see Fig. 1). The process involves initially recon-
structing the face region (see Fig. 1(b)–(c)) and subsequently
predicting the full head (see Fig. 1(d)–(e)). In this study, we
developed an automatic pipeline that facilitates accurate full
3D head creation from a single image, which consists of three
main stages: (1) construction of a 3D human head dataset,
(2) development of 3DCMM with a UV map-based UNet
(UV-UNet) for face-to-head prediction, and (3) reconstruction
of the 3D face region and creation of the full head using
3DCMM. Compared to our previous work, which proposed
a linear face-to-scalp model transformation approach, this
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Fig. 1: Our 3D full head creation from a single-face image. (a) 2D face images from the CelebA dataset [6], (b) face alignment
results with projected 150 landmarks from (c) our 3D reconstructed face, (d) 3D created full head, (e) 3D full head without
expressions.

study represents significant advancements in creating full 3D
heads. We constructed a more robust 3D morphable model
by combining datasets of Chinese and Caucasians subjects,
developed a nonlinear UV-UNet for predicting the full head
from face regions, and successfully applied these methods to
achieve full 3D head creation from a single 2D image. The
main contributions of our research are as follows:

• We constructed powerful 3DCMMs with UV map-based
UNet via large-scale datasets of real 3D human heads to
generate 3D faces and predict 3D scalps for full heads.

• We proposed a novel and accurate stepwise 3DCMM-
based full-head creation pipeline and fully exploited
image-level information by incorporating two new and
effective losses in 3DCMM-based 3D face reconstruction:
facial boundary-aware and structure-aware losses.

• We demonstrated the superiority of our 3D compre-
hensive morphable models with UV map-based UNet
through several qualitative and quantitative comparisons
and introduced some new applications for our model.

II. RELATED WORK

A. 3D Head Datasets

The availability of 3D face/head datasets plays a vital role in
constructing 3D statistical models and training deep networks
with relevant data. While several 3D human face datasets,
including Facewarehouse [9], MeIn3D [7] and FaceScape [8],
exist, there is a scarcity of large-scale, precise 3D human
head datasets. The only dataset of this kind is HeadSpace
[19], which includes 1,519 subjects, primarily of Caucasian
ethnicity. Existing 3D face datasets are typically created for
face-related tasks, such as face reconstruction and recognition,
while 3D head datasets have broader applications [19], such
as headwear design and craniofacial diagnosis. The dearth of
large-scale 3D head datasets poses challenges in head scan
collection due to hair occlusion. In this paper, we present
our effort to construct a comprehensive 3D head dataset on
a large scale for creating 3D statistical models and training
head prediction networks.

B. 3D Morphable Models
3DMMs are statistical models designed to capture the

primary components that represent variations in shape and
texture within a given training dataset, forming a founda-
tion for tasks related to 3D face and head generation and
reconstruction. Numerous powerful 3DMMs for human faces
and heads have been developed, including BFM [20], LSFM
[7], FaceScape [8], FaceWarehouse [9], LYHM [19], and
HiFi3D++ [21]. However, few 3DMMs are constructed using
large-scale datasets with a balanced representation of both
Caucasian and non-Caucasian populations spanning different
age groups, from children to the elderly. Therefore, in this
paper, we describe our more comprehensive and powerful
3DMM of human faces, which we created by combining our
large-scale Chinese head datasets with an existing large-scale
Caucasian head dataset [19]. For a more extensive exploration
of 3DMMs, we recommend referring to a recent survey by
Egger et al. [22].

C. 3D Face Reconstruction

With the assistance of 3DMMs, self-learning-based methods
[12], [13], [15], [16], [23] have gained popularity in predicting
3D face meshes from 2D face images. These methods utilize
the shape or texture coefficients of a 3DMM in an analysis-
by-synthesis scheme. Compared to supervised CNN-based
methods [24], [25], [26], [27], [28], which require large-scale
datasets of 2D face images and reference 3D face shapes, the
main advantage of self-learning-based methods is their ability
to train solely on 2D face images, eliminating the need for
3D face shape references. Commonly encountered image-level
losses in these methods include photometric loss, perceptual
loss, and landmark loss. However, other largely unexplored
image-level losses exist that have the potential to affect the
accuracy of 3D face reconstruction, e.g., facial boundary-
aware and structure-aware losses. Hence, we comprehensively
considered these image-level losses in 3D face reconstruction.
A more comprehensive review of 3D face reconstruction can
be found in a recent survey [1].
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D. 3D Head Reconstruction

While previous studies primarily focused on reconstructing
the 3D face [16], [13], [12], or even a tightly cropped facial
region [15], there are limited studies that directly reconstruct
the full 3D head from 2D images [14], [18]. A facial image
alone provides only facial region information, and lacks scalp
information due to hair occlusion. In these 3D weekly su-
pervised full-head reconstruction approaches [14], [18], the
3DMM of human heads is used instead of the 3DMM of
human faces, where the scalp shape is often influenced by
regularization loss. Hence, in our paper, we adopted a different
pipeline for creating the full 3D head in a stepwise manner: 3D
face reconstruction using the 3DMM of human faces followed
by 3D head completion using a supervised learning network.

E. 3D Head Prediction

In previous studies, 3D head prediction has been defined
as an estimation of the scalp region from the face region to
generate a full head, which is the same as 3D scalp completion
[2], partial data reconstruction [19], and 3D cranium prediction
[29]. Since 3D scalp regions, different from 3D face regions,
cannot be captured directly using scanners, it is significant and
useful to be able to predict the full 3D head. Some previous
studies [29], [11] computed a model-coefficients mapping
matrix between 3DMMs of human faces and scalps/heads to
achieve 3D scalp prediction. It is assumed that this model
mapping relationship is linear in their studies. Some previous
studies [2], [19] also used 3DMMs of human heads to fit
the 3D face regions to estimate the model coefficients, then
produced the full 3D head. However, the accuracy of scalp
shape prediction is susceptible to the regularization term in
this 3DMM-based fitting approach. To address this limitation,
we adopted an alternative approach. By utilizing a large-scale
dataset of paired real face and head meshes as a training
dataset of UV maps, we devised a UV-map-based UNet (UV-
UNet) architecture to achieve accurate 3D full-head prediction.

III. FULL 3D HEAD CREATION

A. Overview

Our pipeline for creating a full 3D head consists of two
primary steps, depicted in Fig. 1: (1) 3D face reconstruction
from a single 2D image and (2) 3D head prediction based on
the reconstructed 3D face. The foundation of this pipeline is
our 3DCMM, which comprises the 3DMM for human faces
used in 3D face reconstruction and the UV-UNet utilized for
3D head prediction. Consequently, the construction of the
3DCMM is the initial step. Our 3DCMM is built upon a
large-scale dataset of real human heads, offering significant
advantages in terms of its ability to facilitate accurate 3D face
reconstruction and 3D scalp prediction for 3D head creation.
Furthermore, compared with other model-based 3D face re-
constructions [12], [13], [18], [16], a significant difference is
that our method uses two critical novel facial boundary-aware
and structure-aware losses, thereby producing more accurate
facial contours and structure consistency.

Fig. 2: Ethnics and age information of the subjects in the 3D
head database for our 3DCMM construction.

B. 3D Comprehensive Morphable Model Construction

1) Full-Head Dataset: To establish a comprehensive
3DCMM, we combined our Chinese head database (i.e.,
Adult-Heads [31] and Children-Heads [32]) with a Caucasian
head dataset (HeadSpace [19]) for a total of 3,846 subjects
(including 49.90% females and 50.10% males). Their ethnicity
and age information are shown in Fig. 2. Compared to previous
datasets [8], [9], our dataset has balanced representation of
both Chinese and Caucasian populations spanning different
age groups, from children to the elderly. Once we had created
the full combined database, we identified 51 landmarks as
the registration constraints on the head scan surface using
the Face Alignment Network (FAN) [33] (see Step 1 of
Fig. 3) and registered these 3D scans into parameterized
heads by applying the widely-used non-rigid iterative closest
points (NICP) algorithm [34] with 3D face [35] and head
[21] templates (see Step 2 of Fig. 3), respectively. Each
registered 3D facial/head mesh has 53,215/20,052 vertices and
105,840/39,984 triangles. The position relationship between
the face and head is shown in Fig. 4, where Region-F and
Region-S indicate the facial and scalp regions in the full head.

2) Human Faces’ 3DMM: Based on these registered facial
meshes, we use the General Procrustes Analysis (GPA) [36] to
unify their size, poses and positions, and then Principal Com-
ponent Analysis (PCA) to extract their principal components
(PCs) (see Step 3 of Fig. 3). Each registered mesh geometry
is represented as a shape-vector, S=(x1, y1, z1, . . . , xm, ym,
zm)T ∈ R3m, that contains the x, y, z coordinates of its m
vertices. Consequently, a novel morphable face shape Sf (see
Step 6 of Fig. 3) can be described and constructed with the
average shape Sf , the extracted PCs Pf , and the facial shape
representation coefficient vector αf :

Sf = Sf +

n∑
i=1

αf,iPf,i = Sf + Pfαf , (1)

where n is the number of the facial shape PCs. The prob-
ability p(αf ) of coefficients αf is given by p(αf ) ∼
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Fig. 3: Overview of our automatic 3DCMM construction pipeline for 3D full head creation, including two main components:
(1) A 3DMM to generate 3D human face, and (2) a UV-UNet to predict 3D full head. 1 3D facial landmark detection, 2 3D
face/head registration, 3 human face’s 3DMM establishment, 4 3D face/head UV map generation, 5 UV-UNet training, 6
3D face generation, 7 3D face UV map generation, 8 3D head UV map prediction, 9 3D full head retrieval.

Fig. 4: Our predefined face and head segmentation regions.
Facial regions [30]: Region-T ∈ Region-I ∈ Region-F. Scalp
regions [11]: Region-S.

exp

[
− 1

2

∑n−1
i=1

(
αf,i

σf,i

)2
]

, where σ2
f,i is the eigenvalues of the

shape covariance matrix.
The FaceScape dataset [8] comprises Chinese face scans that

exhibit highly precise texture details captured using a multi-
view system under controlled illumination. Furthermore, the
HeadSpace dataset [19] consists of head scans with texture
information primarily from Caucasian subjects. Leveraging
these datasets, we utilized 399/497 available face scans from
FaceScape/HeadSpace to establish a 3DMM of facial tex-
tures, which involved employing a similar model construction
pipeline. To describe and construct a novel face texture Tf ,
we combined the average texture Tf , the PCs Qf with facial
shape representation coefficient vector δf , using the following
formulation:

Tf = Tf +

n∑
i=1

δf,iQf,i = Tf +Qfδf . (2)

3) Face-to-Head UV-UNet: For any given 3D facial mesh,
we proposed a UV-UNet to predict the full head mesh through
a 2D UV map. To apply the 2D convolutional neural networks
(CNNs) to the 3D facial/head meshes, it is necessary to
transform the 3D meshes into 2D UV maps using predefined
UV coordinates. Several subsequent steps were performed to

achieve the full head prediction.
(a) Mesh Alignment. To achieve face pose normalization,

we employed Procrustes analysis (PA) to align the face scan
to the face template. The objective of PA is to compute a linear
transformation matrix R that minimizes the total distance
between the vertices of the facial template (S̃f ∈ Rm×3) and
the registered facial meshes (Sf,i ∈ Rm×3), as given by:

min
R

m∑
i=1

∥∥∥RSf,i − S̃f,i

∥∥∥2
F
, (3)

where, RTR = I is a constraint on the transformation matrix,
and ∥ · ∥F denotes the Frobenius norm, which corresponds
to the element-wise Euclidean distance. The resulting aligned
facial mesh is computed as S̈f = RSf . Similarly, each
corresponding head mesh Sh can be aligned to the facial tem-
plate using the same linear transformation matrix R, yielding
S̈h = RSh.

(b) UV Map Generation. The differences Df between the
aligned facial meshes and the facial template were computed
and scaled to 0∼1: Df =

((
S̈f − S̃f

)
/Dmax + 1

)
/2, and

then rendered into 2D UV maps (256 × 256 pixels) using
predefined UV coordinates (see Step 4 of Fig. 3). Here,
Dmax=25, which was confirmed as the maximal difference
between all aligned facial meshes and the template. We also
used a similar approach to compute the 2D head UV maps
(256 × 256 pixels): Dh =

((
S̈h − S̃h

)
/Dmax + 1

)
/2.

(c) Network Development and Training. ResNet34 [37], [38]
was used as the backbone for constructing the UV-UNet to
predict the head UV maps from the facial UV maps (see Step
5 of Fig. 3). The training loss L(x) in supervised learning
is computed as the mean absolute difference between the
predicted head UV map Dh,p and the ground truth Dh,t:

L(x) =
1

W ×H

H∑
i=1

W∑
j=1

∥Dh,p
i,j −Dh,t

i,j ∥. (4)

Here, W = H = 256. For our study, we divided the UV
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Fig. 5: Overview of our 3DCMM-based face reconstruction procedure with self-supervised learning and head prediction using
UV-UNet. Besides the above image-level losses (including pixel-wise Lpixel(x), perceptual identity Lpercep, boundary-aware
Lbound, facial landmark Llands, and structure-aware Lstruct losses), there are still two other commonly used losses: mesh skin
variance loss Ltext and regularization term Lregual.

map dataset into three subsets: 90% was used for training,
5% for validation, and 5% for testing purposes. To implement
and train our model, we employed PyTorch [39] along with
the Adam optimizer [40] and conducted approximately 500K
iterations with a batch size of 16 and an initial learning rate
of 1e-4.

(d) 3D Head Prediction and Retrieval. A bilinear interpola-
tion method with predefined UV coordinates was adopted to
retrieve the vertices’ positions of the 3D head mesh from the
generated 2D UV map: Sh,i = S̃h,i+

(
Di→k

h × 2− 1
)
×Dmax,

where Di→k
h is the interpolated value in the predicted UV map

corresponding to the ith vertex in the head mesh (see Steps
7 , 8 and 9 of Fig. 3).

C. Model-Based 3D Face Reconstruction

1) Differentiable Renderer: Given an unconstrained 2D
face image, our goal is to train an encoder (ResNet50 [37]) to
take a 2D facial image input and decompose it into outputs of
3D facial shape Sf , facial albedo Tf , illumination l, and view-
point w, as illustrated in Fig. 5. The input image IR can be re-
constructed from these four components in two steps of light-
ing Λ and reprojection Π, as: IR = Π(Λ(Sf , l, Tf ), Sf , w).

To deal with the varying facial expressions in 2D images,
we used our 3DMM of facial textures (see Eq. (2)) to estimate
the facial albedo, and integrated the 3D face expression bases
Pe (built from FaceWarehouse [9]) with our 3DCMM-identity
shape bases Pf (see Eq. (1)) into a complete 3D face model,
as follows: Sf = Sf + Pfαf + Peβe, where βe is the shape
coefficients for face expression bases Pe. For the lighting
model, since a Lambertian surface was assumed for the face
[18], [12], [13], we approximated the scene illumination using
Spherical Harmonic (SH [41]) basis functions with the first
three bands (the parameters γ ∈ R27). For the camera model,
similar to previous studies [12], we employed a global camera
model of perspective projection to project the 3D face model
onto the 2D image plane, where the camera position is
determined by an estimated camera matrix m, which can be
computed from a rotation vector ν ∈ R3 and a translation
vector t ∈ R3.

2) Network Objective Function: To decompose the 2D
images successfully, we calculated image-level losses (see
Fig. 5), facial skin color variances Ltext(x) and regularization
term Lregual(x) as the training losses and sought a CNN-
based encoder to minimize them. Image-level losses consist
of pixel-wise Lpixel(x), facial landmark Llands(x), facial
structure-aware Lstruct(x), facial boundary-aware Lbound(x),
and perceptual identity Lpercep(x) discrepancies between the
input and rendered 2D images. All our training losses L(x)
are shown as follows:

L(x) =w1Lpixel(x) + w2Lpercep(x)+

w3Llands(x) + w4Lstruct(x)+

w5Lbound(x) + w6Ltext(x) + w7Lregual(x),

(5)

where wi (i=1,2,...,7) are hyperparameters balancing the
weights of different losses. Ltext and Lregual are computed
using the same formulates as the previous method [12].

Pixel-Wise Loss We utilized the accurate face parsing mask
(produced using MaskGAN [42]) to gain robustness to facial
occlusions and defined the pixel-wise loss Lpixel between the
input raw image I and its rendered counterpart IR as follows:

Lpixel(x) =
1

NE

∑
i∈M

Pi∥Ii − IRi ∥2, (6)

where P is the parsing mask with different values in different
regions and NP is the sum of non-zero pixels in the parsing
mask P . In our method, only Region-I (see Fig. 4) of the
rendered facial mesh, M , was used to produce a new 2D
image.

Perceptual Identity Loss To incorporate this loss, we
utilized a pre-trained face recognition network f (FaceNet
[43]) to extract perceptual features from the input image I
and the rendered image IR. The cosine distance between these
features was then computed as the perceptual identity loss
Lpercep, which quantifies their perceived similarity as:

Lpercep(x) = 1− f(I)f(IR)

∥f(I)∥2 · ∥f(IR)∥2
. (7)
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Fig. 6: An illustration of the ground-truth facial boundary
heatmap generation process, where the standard deviation σ is
set as 7. Each row represents the process of one specific facial
boundary, including outer facial contour, outer/inner mouth,
left/right eyebrow, upper/lower eyelid, and nose bridge/base.

Facial Landmark Loss A publicly available facial land-
mark detector (Baidu) was used to identify 150 points as
sparse ground-truth facial landmarks for the training images.
Similar to [14], [18], we modelled the facial landmarks as
either dynamic or static 3D landmarks and defined the facial
landmark loss Llands, as follows:

Llands(x) =
1

NL

NL∑
k=1

wk∥qk − qRk ∥2, (8)

where q and qR are the landmarks in the input image and
the corresponding vertices in the projected mesh, respectively.
wk is the landmark weight, which is experimentally set as
20/0.8/1.0 for nose/boundary/other landmarks.

Structure-Aware Loss The widely used 2D sparse facial
landmark loss only considers point-to-point distances, making
it easily unrobust to extreme facial poses and highly sensitive
to facial occlusion. In reality, the human face has a fairly
consistent structure with the facial components maintaining
fairly stable relative distances [44]. Hence, we added a face
structure-aware loss to constrain landmark positions in a global
context. As a preprocessing step, we defined a graph structure
of a template face with a small, opened mouth using Delaunay
triangulation of sparse landmarks. We computed the distance
between the ground-truth edges e and projected facial edges
eR as the structure-aware loss Lstruct:

Lstruct(x) =
1

NE

NE∑
i=1

wi∥ei − eRi ∥2, (9)

where NE is the sum of edges in the graph structure, and wi

is the edge weight, which is experimentally set as 0.8 for the
edges with landmarks in the facial contour and 1.0 for the rest
of the edges.

Boundary-Aware Loss Image boundaries provide infor-
mation about 2D shape independently of the texture and
illumination [45]. Facial boundary lines help with 2D face
alignment significantly [46], which inspired us to utilize facial
boundaries to improve 3D face reconstruction. Hence, we

proposed a novel facial boundary-aware loss Lbound as:

Lbound(x) =
1

NB

NB∑
i=1

∥1−H(

3∑
k=1

wi,kSi,k
f )∥2, (10)

where NB is the number of boundary points. To compute this
loss, two steps were performed to produce the ground-truth
heatmap H and reconstructed facial boundary Vb:

(a) For the input image, the facial boundaries were interpo-
lated from sparse facial landmarks to obtain a dense boundary
line. Then, a series of heatmaps was generated by applying a
2D Gaussian function with a standard deviation of σ pixels
centred on the location of each point successively. Finally, all
heatmaps were fused into a single boundary heatmap H as
the input ground truth by selecting only the maximum of each
pixel with the same position in all heatmaps (see Fig. 6).

(b) For the reconstructed mesh, the facial boundaries were
predesigned using dynamic dense points Sb. These dense
points Sb are computed by interpolating at each corresponding
vertex Si,k

f and their barycentric coordinates with the weights
wk: Si

b =
∑3

k=1 w
i,kSi,k

f , then their heat values H(Sb) were
retrieved from the boundary heatmap using a bilinear interpo-
lation method based on their X and Y values. Theoretically,
the boundary heat values should be very large and nearly 1.0.

3) Implementation Details: To train our CNNs, we col-
lected 2D face images from multiple sources, including FFHQ
[48], AAF [49], CACD [50], 300W-LP [24] and SCUT-
FBP5500 [51]. We balanced the race and pose distributions
and obtained approximately ∼150k 2D face images as the
training and validation dataset. The encoder needs to regress
254 parameters, including the model identity (αf ∈ R100),
expression (βe ∈ R57) and texture (δf ∈ R64) coefficients,
lighting (γ ∈ R27), and view (m ∈ R6) parameters. The input
image size is 224×224 pixels. We implemented our model
using PyTorch [39] and PyTorch3D [52]. For network training,
we employed the Adam optimizer [40] with an initial learning
rate of 1e-4. The training process consisted of approximately
500K iterations, with a batch size of 16.

IV. EXPERIMENTAL RESULTS

A. Morphable Model Evaluation

We developed a 3DCMM that encompasses facial shapes
and textures, as illustrated in Fig. 7(a) and Fig. 7(b), respec-
tively. To ensure consistent sizes of the registered meshes, we
applied Generalized Procrustes Analysis (GPA). This approach
allowed the eigenvector loading distributions of the PCs to
solely represent mesh shapes, independent of sizes. In our
3DCMM, the first 100/64 PCs accounted for 98.20%/93.05%
of the explained variances of the 3D facial shapes/textures in
the training datasets. This indicates that the PCs utilized in our
3D face reconstruction provided a concise representation of the
training datasets. To highlight the advantages of our model,
we compared it with BFM2019 [47], LYHM [19], and our
previous 3D Morphable Face Model (3DMFM) [11] (see Fig.
8, only the vertices within the facial region were considered).
We assessed the generalization ability of each model using
30 Chinese [11] and 30 Caucasian [53] facial meshes with
neutral expressions (aged 18-60 years). Employing the same
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(a) (b)

Fig. 7: Our comprehensive 3D morphable models: (a) Facial shape 3DMM, and (b) facial texture 3DMM. The figures show
the mean shape M (centre) and the first four PCs with weights of 3/-3 σi (white/black circle label), where σi represents the
standard deviation of the PCs.

Fig. 8: 3DMM generation ability evaluations. (a) Quantitative comparisons. (b) Qualitative comparisons of a Chinese subject.
(c) Qualitative comparisons of a Caucasian subject. (1) Our constructed 3DCMM. (2) BFM 2019 [47], (3) our previous 3DMFM
[11], and (4) LYHM [19].

model-fitting method, we obtained the closest facial mesh and
calculated the mean error. To ensure fairness, only the first
100 PCs were used for facial reconstruction across all models.
The mean reconstructed face errors (ME) for our 3DCMM,
3DMFM, LYHM, and BFM2019 were 0.30 ± 0.29, 0.36 ±
0.36, 0.78 ± 0.72, and 1.04 ± 0.91 mm, respectively, as
shown in Fig. 8(a). Specifically, the qualitative comparisons
in Fig. 8(b) and Fig. 8(c) reveal significant errors in the nose,
forehead, and mouth regions for the Chinese subject in the
BFM2019 and LYHM results. In conclusion, our 3DCMM
outperforms other 3DMMs in terms of generation capability.

B. Face Reconstruction Evaluation
We evaluated our 3D face reconstruction qualitatively and

quantitatively using a 2D face image dataset (CelebA [6]),

and two 3D face datasets (FaceWareHouse [9], FaceScape [8]).
We then compared our results with publicly available methods,
(i.e., PRNet [25], 2DASL [54], 3DDFA-V2 [26], Deep3DFace
[12], MGCNet [16], MoFa [15], InverseFaceNet [58], Tewari
et al. [57], 3DDFA-V3 [55], and HRN [56]). In the qualitative
evaluation, we followed the previous protocol [30], [59],
[14] using PA, with a set of corresponding landmarks to
align (rotate, translate, and scale) the reconstructed face to
the ground-truth face initially, then, perform a scan-to-mesh
distance-based rigid alignment on them, and finally compute
the mean per-vertex distance (ME) as the evaluation metric.

Qualitative Evaluation In the qualitative evaluation of
facial geometry, we used face images from CelebA [6] to
reconstruct the 3D facial shape and compared our results
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Fig. 9: Qualitative comparisons of 3D face reconstruction and head creation on face images from CelebA [6] and our head
image datasets: PRNet [25], 2DASL [54], MGCNet [16], Deep3DFace [12], 3DDFA-V2 [26], 3DDFA-V3 [55], HRN [56],
ours (face), RingNet [14], DECA [18], and ours (head). Note that our method can regress facial shape with higher facial
boundary and structure consistency and complete the accurate 3D scalp region to produce full head geometry, which is robust
to facial occlusion and extreme poses.

with two state-of-the-art supervised-learning-based face re-
construction methods, (PRNet [25] and 3DDFA-V2 [26]),
and five state-of-the-art self-learning-based face reconstruction
methods, (Deep3DFace [12], MGCNet [16], 2DASL [54],
3DDFA-V3 [55], and HRN [56]), as shown in Fig. 9. From

this, it is clear that, compared with other methods, our method
achieves better facial contour alignment and constructs a more
accurate overall face shape, even for face images with extreme
poses or facial occlusions.

Quantitative Evaluation For the quantitative evaluation of
facial geometry, we used 180 facial meshes (nine identities,
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Fig. 10: Ablation experiment. (a) Quantitative results. (b) Qualitative effect of Lbound (guaranteed to construct more consistent
facial contours for face images). (c) Qualitative effect of Lstruct (improved generation of stable global facial structures, such
as landmarks in the mouth, lower/upper inner lips, and facial contours).

TABLE I: Quantitative comparisons of 3D face reconstruction on 180 meshes of nine subjects with 20 expressions
from FaceWarehouse [9]:ME ± standard deviation (mm).

Region Tewari et al. [57] MoFa [15] InverseFaceNet [58] MGCNet [16] Deep3DFace [12] Ours

Region-T 1.84±0.38 2.19±0.54 2.11±0.46 2.18±0.35 1.74±0.29 1.60±0.29
Region-I - - - 2.23±0.39 1.78±0.32 1.63±0.29
Region-F - - - 2.47±0.36 2.18±0.47 2.12±0.31

TABLE II: Quantitative comparisons of 3D face reconstruction on 900 meshes of nine subjects with 20 expressions
and five facial poses from FaceScape [8]: ME ± standard deviation (mm).

Region 2DASL [54] PRNet [25] 3DDFA-V2 [26] Deep3DFace [12] Ours

Region-T 2.78±0.61 2.68±0.52 2.95±0.56 2.11±0.50 2.12±0.45
Region-I 2.95±0.62 2.91±0.55 2.98±0.58 2.21±0.50 2.13±0.46
Region-F 3.39±0.62 3.32±0.54 3.52±0.65 2.71±0.53 2.67±0.50

20 expressions each) selected from the FaceWareHouse dataset
[9] created in a previous study [57]. Three face regions were
evaluated as shown in Fig. 4: the tightly cropped face region
(Region-T, same as in [57]), inner facial region (Region-I) with
more cheek area (same as in [12]) and full face (Region-F)
with neck and ears. We compared our results with five model-
based methods: Deep3DFace [12], MoFa [15], MGCNet [16],
Tewari et al. [57], and InverseFaceNet [58]. The MEs of face
reconstruction methods are shown in Table I; our method is a
significant improvement upon the previous ones.

To evaluate the face pose influences, we compared our re-
sults with two supervised-learning-based methods: PRNet [25]
and 3DDFA-V2 [26], and two self-learning-based methods:
Deep3DFace [12] and 2DASL [54], as shown in Table II. We
used 900 facial meshes (nine identities, 20 expressions each,
five different facial poses each) from the FaceScape dataset
[8]. Table II shows that the mean face reconstruction error of
our method is slightly greater than that of Deep3DFace [12]
for Region-T, but less than that of other methods for Region-
I and Region-F, indicating that our method made notable

improvement on the overall reconstruction of facial shape.

Ablation Study To showcase the effectiveness of our pro-
posed novel losses, we performed an ablation study, which
involved training our network with and without the boundary-
aware/structure-aware loss components. In this evaluation, we
utilized 180 facial meshes (nine identities, 20 expressions)
selected from the FaceWareHouse dataset [9]. The quantitative
evaluation results are shown in Fig. 10(a). The reconstruction
errors for Region-I for the training networks with Lbound &
Lstruct, without Lbound, and without Lstruct are 1.63 ± 0.29,
1.98 ± 0.37, and 1.71 ± 0.28, respectively. These results
indicate that the inclusion of boundary-aware and structure-
aware losses improves reconstruction accuracy. Furthermore,
in the qualitative comparisons in Fig. 10(b), the boundary-
aware loss Lbound generates more consistent ground-truth
facial boundaries for overall facial geometry. Additionally, in
Fig. 10(c), the qualitative comparisons reveal that structure-
aware loss enhances the relative positions of facial landmarks,
such as the closed eyes and mouth.
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Fig. 11: Head prediction method comparisons. (a) Quantitative comparisons. (b) Qualitative comparisons of a Chinese subject.
(c) Qualitative comparisons of a Caucasian subject. (1) 3DMM-based conversion method [11], (2) 3DMM-based fitting method
[2] and (3) Our UV-UNet-based method.

TABLE III: Quantitative comparisons of 3D head creation on
75 meshes of 25 subjects with three different head poses: ME
± standard deviation (mm).

Region RingNet [14] DECA [18] Ours

Region-I 3.09±2.24 1.97±1.60 2.02±1.46
Region-F 3.46±2.63 2.33±2.00 2.25±1.78
Region-S 5.00±4.06 4.49±3.87 4.24±3.89

C. Head Prediction Evaluation

We first compared our 3D head creation from 3D facial re-
gions with our previous 3DMM-based transformation method
[11] and 3DMM-based fitting method [2] qualitatively and
quantitatively, and then compared our 3D head creation from a
single image with the methods (RingNet [14], and DECA [18])
qualitatively and quantitatively on a 2D face image dataset
(CelebA [6]) and our established 3D head datasets.

3D Scalp Prediction We compared our UV-UNet-based
head prediction results from 3D facial regions with our pre-
vious 3DMM-based transformation method [11] and 3DMM-
based fitting method [2] using 30 Chinese identities [11] and
30 Caucasian identities from HeadSpace [19], as shown in Fig.
11. The mean scalp prediction errors of our UV-UNet, 3DMM-
based transformation, and 3DMM-based fitting methods are
1.87±0.82, 3.58±1.88, and 3.97±1.61 mm, respectively (see
Fig. 11(a)). Hence, our method could predict scalp regions
more accurately from 3D facial regions for 3D head creation.

3D Head Reconstruction In the qualitative evaluation of
head geometry, we used the 2D face images from CelebA
[6] to predict full 3D head shape and compared our results
with two state-of-the-art self-supervised-learning-based head
reconstruction methods (RingNet [14] and DECA [18]), as
shown in Fig. 9. Compared with other methods, our method
achieved better facial contour consistency. Furthermore, from
the first row, it is clearly visible that our method can model a

more accurate mouth closure, compared with DECA [18]. For
the quantitative evaluation of full-head geometry, especially
the scalp region, we collected an additional 75 full heads from
25 identities with three different head poses, ranging from
frontal to profile view. We furthermore compared our results
from a single image with RingNet [14] and DECA [18] using
the same evaluation metrics [30], as shown in Table III. We
evaluated three head regions: the inner facial region (Region-I),
the full facial region (Region-F), and the scalp region (Region-
S), as shown in Fig. 4. Table III shows that our method has a
similar rate of errors as DECA [18] in Region-I, but performs
favorably against both [18] and [14] in Region-F and -S.

D. Runtime Analysis
The runtime performance of our method was evaluated

on a computer with an Nvidia GeForce RTXTM 3090 GPU
with 24GB memory. The analysis included the time taken
for 2D face image reading and preprocessing (including fa-
cial landmark detection for alignment and cropping utilizing
FAN [33]), 3D face estimation from 2D face images (using
ResNet50 [37]), and 3D head prediction from 3D face regions
(using our UV-UNet). For 2D face images (size: 256 pixels
× 256 pixels), the image reading and preprocessing time,
including facial landmark detection, is approximately 0.321
seconds. This time, though, is influenced by the size of input
image. The time required for 3D face estimation from a 2D
face image (size: 224 pixels × 224 pixels) is approximately
0.007 seconds. The 3D head prediction from face regions
takes around 0.205 seconds. This time includes the steps of
projecting the 3D face (with 53,215 points) into a 2D UV
position map (size: 256 pixels × 256 pixels), predicting the 2D
head UV map, and retrieving the 3D head mesh (with 56,804
points) from the 2D UV map. In total, the computation time of
our method was approximately 0.526 seconds. These runtime
measurements offer a performance overview of our method on
the specified hardware setup and the actual runtime may vary
depending on hardware specifications and data complexity.
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Fig. 12: Our full head prediction from face regions reconstructed using different methods. (a) Face alignment results with 150
projected landmarks from (b) reconstructed facial regions. (c)/(d) Predicted full head.

Fig. 13: Diverse application scenarios for our 3DCMM, encompassing headset and helmet customization, and avatar creation.
When provided with a headwear product template meticulously crafted by professional designers, our system seamlessly
transfers the product from the template head to the accurately predicted specific head.

E. Application Scenarios

Compared to existing 3DMMs that primarily focus on
the frontal face region, including the forehead [7], [8], [9],
[47], the scalp region is often overlooked. Fortunately, our
developed UV-UNet-based method demonstrates the capability
to predict the full head based on 3D faces generated or
synthesized by other 3DMMs [7], [8], [20], [47] (see Fig.
12). This expansion of functionality effectively broadens the
applications of previous studies and holds great promise for
future tasks related to 3D face/head reconstruction and pre-
diction. This represents a key advantage of our UV-UNet-
based head prediction method, even when compared to our
previous model-based transformation approach [11]. Notably,
the accuracy of the created full-head mesh is influenced by the
quality of the reconstructed face from images or scans (see
Fig. 12(d)). An accurate full-head mesh, encompassing not
only the face but also the scalp region, brings about significant
advancements in various applications beyond face reconstruc-

tion and manipulation. These applications include the creation
of realistic avatars [2], [60], the customization of headwear
products [4], and the facilitation of headwear virtual try-ons
[3], as depicted in Fig. 13. The inclusion of the scalp region
in the full-head representation holds particular importance for
ergonomic headwear design, as it directly impacts the shape
design of the contact area between the headwear and the scalp.
By incorporating the scalp region, precise measurements and
simulations can be conducted, resulting in enhanced headwear
comfort, fit, and overall design.

V. LIMITATIONS

In this study, there were still limitations that could affect
the efficiency of our 3D face reconstruction and 3D head
prediction. The first limitation is the impact of hair contam-
ination on 3D head capture and modelling. In our Chinese
head database, participants were required to wear a tight,
custom-designed latex cap during scanning to mitigate surface
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distortions caused by hair [31], [32]. However, despite these
precautions, compressed hair can still affect the scanned scalp
regions, particularly in individuals with longer hair. This is a
recognized issue, with previous studies [61] reporting average
hair thickness offsets of 3.6 mm for males and 5.8 mm for
females in Australian adults, even when participants’ hair was
compressed by wearing a wig cap. To address this concern in
future research, we intend to explore the utilization of 3D head
data obtained through Computed Tomography (CT) imaging
[62]. CT imaging offers a more detailed representation of
internal structures, enabling the removal of hair and cap effects
from 3D head meshes. By adopting this approach, we aim
to enhance the accuracy and reliability of our methods by
eliminating biases introduced by hair and caps during the
scanning process. The second limitation is the impact of
extreme face poses or expressions on 3D face reconstruction
from 2D images. The detected facial landmarks can only
cover facial contours, eyes, noses, and mouths. Thus, ensuring
accurate reconstruction of the forehead (see Region-I in Fig.
4), which is greatly related to head completion, is challenging.
Inaccuracies in the reconstructed face (especially the forehead
regions), particularly under extreme poses or expressions, can
propagate to the final 3D head model and result in inaccuracies
in the predicted scalp regions (see Fig. 12(a)). During extreme
poses, the limited visibility of certain facial regions and the
occlusion of landmarks by other facial components can fur-
ther contribute to inaccuracies in head reconstruction. Under
extreme expressions, facial geometry can undergo significant
changes, leading to challenges in accurately capturing the
shape and details of the head. In the future, we plan to
collect more face images with a variety of extreme poses and
expressions as a supplementary training dataset to improve the
robustness and accuracy of our proposed method.

VI. CONCLUSION

We constructed comprehensive 3D morphable models of
human heads by leveraging large-scale real 3D human head
data, which included incorporating 3D morphable models
of human faces and our UV-UNet-based head prediction
model. Additionally, we developed a 3DCMM-based 3D face
reconstruction method using self-supervised learning tech-
niques. We maximized the utilization of image-level informa-
tion and introduced two innovative losses: facial boundary-
aware and structure-aware losses. The incorporation of these
losses improved the consistency of facial boundaries and
structures. Through model comparison experiments, we have
demonstrated that our model surpasses existing state-of-the-
art 3DMMs in terms of generalization ability and accuracy.
Furthermore, thorough evaluation experiments have shown that
our head creation method achieves outstanding results in 3D
face reconstruction and scalp prediction.
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